A distributed Content-Based Video Retrieval system for large datasets

Author:

Saoudi El MehdiORCID,Jai-Andaloussi Said

Abstract

AbstractWith the rapid growth in the amount of video data, efficient video indexing and retrieval methods have become one of the most critical challenges in multimedia management. For this purpose, Content-Based Video Retrieval (CBVR) is nowadays an active area of research. In this article, a CBVR system providing similar videos from a large multimedia dataset based on query video has been proposed. This approach uses vector motion-based signatures to describe the visual content and uses machine learning techniques to extract key frames for rapid browsing and efficient video indexing. The proposed method has been implemented on both single machine and real-time distributed cluster to evaluate the real-time performance aspect, especially when the number and size of videos are large. Experiments were performed using various benchmark action and activity recognition datasets and the results reveal the effectiveness of the proposed method in both accuracy and processing time compared to previous studies.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning clustered deep spatio-temporal prototypes using softmax regression for video information systems;International Journal of Information Technology;2024-03-29

2. An Intelligent Retrieval Method for Audio and Video Content: Deep Learning Technology Based on Artificial Intelligence;IEEE Access;2024

3. Content-based Video Retrieval Systems: A Review;2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA);2023-12-21

4. Sports video retrieval and classification using focus u-net based squeeze excitation and residual mapping deep learning model;Engineering Applications of Artificial Intelligence;2023-11

5. A Retrieval System for Images and Videos based on Aesthetic Assessment of Visuals;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3