Tomato Leaf Disease Detection using Back Propagation Neural Network

Author:

Abstract

Most of the Indian economy rely on agriculture, so identifying any diseases crop in early stages is very crucial as these diseases in plants causes a large drop in the production and economy of the farmers and therefore, degradation of the crop which emphasize on the early detection of the plant disease. These days, detection of plant diseases has become a hot topic in the area of interest of the researchers. Farmers followed a traditional approach for identifying and detecting diseases in plants with naked eyes, which didn’t help much as the disease may have caused much damage to the plant. Tomato crop shares a huge portion of Indian cuisine and can be prone to various Air-Bourne and Soil-Bourne diseases. In this paper, we tried to automate the Tomato Plant Leaf disease detection by studying the various features of diseased and healthy leaves. The technique used is pattern recognition using Back-Propagation Neural network and comparing the results of this neural network on different features set. Several steps included are image acquisition, image pre-processing, features extraction, subset creation and BPNN classification.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Data Augmentation on SSD Mobilenet for Detection of Kenaf Plant Disease and Pest;Proceedings of the 8th International Conference on Sustainable Information Engineering and Technology;2023-10-24

2. Recognition of soybean pods and yield prediction based on improved deep learning model;Frontiers in Plant Science;2023-01-13

3. Plant leaves disease detection using Image Processing and Machine learning techniques;International Journal of Next-Generation Computing;2022-11-26

4. Monitoring Technology of Abnormal Displacement of BeiDou Power Line Based on Artificial Neural Network;Computational Intelligence and Neuroscience;2022-08-31

5. Tomato Plant Disease Classification Using Deep Learning Architectures: A Review;Proceedings of Second International Conference on Advances in Computer Engineering and Communication Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3