Monitoring Technology of Abnormal Displacement of BeiDou Power Line Based on Artificial Neural Network

Author:

Yang Jingbo1ORCID,Chen Yihan1,Yu Jiarong1,Zhou Zheng1,Guo Yanna1,Liu Xingye1

Affiliation:

1. Wuxi Guangying Group Co., Ltd., Wuxi 214000, Jiangsu, China

Abstract

In the practice of power line engineering, navigation and positioning technology is often used in the fields of information collection and analysis, optimized line design, and deformation monitoring. Compared with traditional measurement technology, it has the characteristics of high precision and high reliability. In order to realize the measurement of abnormal displacement of power lines, improve the efficiency and quality of monitoring, and reduce the occurrence of faults, firstly, this study introduces the basic theory of artificial neural network (ANN). The core algorithm of the ANN-BP (back propagation) neural network has been improved. The improved algorithm is used to improve the BeiDou Navigation Satellite System (BDS). The improved and the unimproved BDS are used to solve the collected related data. The results show that the geometric dilution of precision (GDOP) values obtained by conventional BDS are small, all within the range of less than 4. After the introduction of the BP neural network into the system, the geometric space distribution of positioning satellites is improved, the GDOP is reduced, the reliability and availability of satellite positioning are enhanced, and the accuracy requirements are met. The accuracy of the measured data positioning results of the two systems has reached the cm level. There is not much difference between the processing results of the two modes. Among them, the Z direction accuracy has the largest difference, which is 2.5 cm. The introduction of the BP neural network has improved the spatial combination structure, and the positioning results in the three directions of X, Y, and Z are all better. From the perspective of root mean square (RMS), the RMS fluctuation of the simulation results obtained by observing the conventional BDS is large. The RMS value of BDS displacement based on the BP neural network is smaller, and the change is gentle. With the increase in the number of epochs and the increase in the number of simulations, its value is also more convergent. These data show that the quality of BDS observations based on the BP neural network is significantly better. These contents will effectively improve the monitoring accuracy and operational reliability of the system and have important practical significance and application value.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3