Wireless Power Transfer Through Inductive Coupling For Aimds

Author:

Abstract

For the patients with some cardiovascular diseases, implantable devices like implantable cardiac pacemakers and implantable cardioverter defibrillators play a very important role. The life of implantable device is limited by the life of battery and the size of implanted device is dependent on size of battery. More life of battery demands larger battery size. Since these devices are implanted inside the human body, they must be small in size as well as of long battery life. Wireless re-charging of such devices can only be the solution to reduce the size and increase life of AIMDs. Wireless recharging by magnetic resonance coupling in less time is expected and hence this topic is considered for more research to have uninterrupted power supply from battery. Selection of operating frequency for transfer of power wirelessly is of great concern as it requires attention towards certain guidelines as basic restrictions provided by International Commission on non-ionizing Radiation Protection (ICNIRP). With lower frequencies used for power transfer, the efficiency would be less whereas with higher frequencies efficiency would be higher but with the use of higher frequencies for power transfer certain biological issues needs attention like tissue heating. In the technique of wireless power transfer, the transmitting coil is assumed to be outside the body and receiver coil is considered to be inside the human body above the pacemaker shell. The efficiency of power transfer is affected by frequency for power transfer and distance between the two coils.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rechargeable Active Implantable Medical Devices (AIMDs);International Journal of Online and Biomedical Engineering (iJOE);2023-09-18

2. Design and development of inductive resonance coupling wireless power transfer (WPT) system using MULTISIM software;MATERIALS V INTERNATIONAL YOUTH APPLIED RESEARCH FORUM “OIL CAPITAL”: Conference Series “OIL CAPITAL”;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3