Rechargeable Active Implantable Medical Devices (AIMDs)

Author:

Newaskar DeepaliORCID,Patil B.P.ORCID

Abstract

Active Implantable Medical Devices (AIMDs) act as lifesaving devices. They provide electrical signals to tissues as well as perform data-logging operations. To perform these operations, they need power. The battery is the only source for such devices, as they are placed invasively inside the human body. Once the battery drains out, the patient wearing the device has to undergo medical surgery for the second time, where there are many chances of infections, and it could be life-threatening too. If the AIMDs, e.g., pacemakers are designed using rechargeable batteries, then the devices can be recharged regularly, which can increase the life of the device as well as reduce its size. Wireless charging of AIMDs such as ICDs or pacemakers is proposed in this paper using magnetic resonant coupling. The selection of frequency for power transfer is the most crucial part, as the basic restriction (BR) criteria proposed by ICNIRP guidelines and the IEEEC95.1 standard need to be followed, which ensures the safety of the patient. This is suggested by considering some basic restriction parameters, such as specific absorption rate (SAR) and current density, as suggested by guidelines. In this paper, experimentation using two frequencies is shown, i.e., 1.47 MHz (the high frequency) and 62 KHz (the low frequency). For experimentation, goat flesh and saline solution are used. Secondary coil and flesh are dipped in the saline solution. Battery recharging performed at a lower frequency took less time than with a frequency in the MHz range. All BR criteria are fulfilled for both frequencies, so the proposed methodology is safe to use.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing Emerging Trends in Wireless Implantable Medical Devices (IMDs): A Bibliometric Study;International Journal of Online and Biomedical Engineering (iJOE);2024-03-04

2. Analyzing the Trends and Global Growth of Energy Harvesting for Implantable Medical Devices (IMDs) Research—A Bibliometric Approach;International Journal of Online and Biomedical Engineering (iJOE);2024-02-27

3. Global Growth and Trends of In-Body Communication Research—Insight From Bibliometric Analysis;International Journal of Online and Biomedical Engineering (iJOE);2024-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3