Abstract
A large set of data are being generated in engine testing which is used for the evaluation of performance and prediction of emission characteristics. For any engine modifications or required improvements in the results, the whole testing procedure to be repeated again for further evaluation. To overcome this repetition, we need some data handling and analysis techniques such as machine learning and prediction models. The datasets which were collected by testing procedures help in building a prediction model by which the expected results of the test can be predicted without conducting repeated trials. This study mainly focusses on predicting the emissions of a diesel engine using a prediction model built by Linear Regression Algorithm in Machine Learning using Regression Learner Application in MATLAB. Linear Regression prediction model was built from the emission data collected from the single-cylinder diesel engine testing. The prediction model is validated and compared with the actual testing data obtained. Errors such as RMSE, MSE, MAE, R-squared errors are evaluated and found to be minimum. Using a validated prediction model, the emissions values can be predicted for any range of data set. This will reduce the time and cost involved by the repetition of testing procedures
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Electrical and Electronic Engineering,Mechanics of Materials,Civil and Structural Engineering,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献