Author:
Alruwaili Madallah, ,El-Ghany Sameh Abd,Shehab* Abdulaziz, ,
Abstract
Plant disease detection is used to detect and identify symptoms of plant diseases. Detection of plant diseases through the naked eye is ineffective, especially because there are numerous diseases. Therefore, there is a need to develop low-cost methods to improve rapidity and accuracy of plant disease diagnosis. This paper presents an effective model for plant disease detection by using our developed deep learning approach. Extensive experiments were performed on the PlantVillage dataset, which contains 54,306 images categorized between 38 different classes containing 14 crop species and 26 diseases. Our proposed model demonstrated significant performance improvement in terms of accuracy, recall, precision, and F1-score compared with the existing model used for plant disease detection.
Publisher
Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP
Subject
Computer Science Applications,General Engineering,Environmental Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献