Adaptive feature selection with deep learning MBi-LSTM model based paddy plant leaf disease classification
Author:
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Hardware and Architecture,Media Technology,Software
Link
https://link.springer.com/content/pdf/10.1007/s11042-023-16475-7.pdf
Reference22 articles.
1. Alruwaili M, Abd El-Ghany S, Shehab A (2019) An enhanced plant disease classifier model based on deep learning techniques. Int J Adv Technol Eng Explor 9(1):7159–7164
2. Atole RR, Park D (2018) A multiclass deep convolutional neural network classifier for detection of common rice plant anomalies. Int J Adv Comput Sci Appl, 9(1)
3. Azim MA, Islam MK, Rahman MM, Jahan F (2021) An effective feature extraction method for rice leaf disease classification. Telkomnika (Telecommunication Computing Electronics and Control) 19(2):463–470
4. Bari BS, Islam MN, Rashid M, Hasan MJ, Razman MAM, Musa RM, Ab Nasir AF, Majeed APA (2021) A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework. PeerJ Comput Sci 7:e432
5. Cervený J, Begall S, Koubek P, Nováková P, Burda H. Directionalpreference may enhance hunting accuracy in
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Identifying False News Using Enhanced Passive Aggressive Classifier Methods;2024 2nd International Conference on Disruptive Technologies (ICDT);2024-03-15
2. RETRACTED ARTICLE: Feature selection with Optimized XGBoost model-based paddy plant leaf disease classification;Multimedia Tools and Applications;2024-02-23
3. Identification and Detection of Rice Plant Diseases by Using Neural Network;Lecture Notes in Networks and Systems;2024
4. Rice Impact Illness Acknowledgment Employing a Profound Convolutional Neural Arrange;2023 IEEE International Conference on Computer Vision and Machine Intelligence (CVMI);2023-12-10
5. Cyber attack Detection Using Machine Learning Techniques;2023 IEEE International Conference on ICT in Business Industry & Government (ICTBIG);2023-12-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3