A Support Vector Machine and Decision Tree Based Breast Cancer Prediction

Author:

Assegie Tsehay Admassu, ,J. Sushma S.,

Abstract

The first step in diagnosis of a breast cancer is the identification of the disease. Early detection of the breast cancer is significant to reduce the mortality rate due to breast cancer. Machine learning algorithms can be used in identification of the breast cancer. The supervised machine learning algorithms such as Support Vector Machine (SVM) and the Decision Tree are widely used in classification problems, such as the identification of breast cancer. In this study, a machine learning model is proposed by employing learning algorithms namely, the support vector machine and decision tree. The kaggle data repository consisting of 569 observations of malignant and benign observations is used to develop the proposed model. Finally, the model is evaluated using accuracy, confusion matrix precision and recall as metrics for evaluation of performance on the test set. The analysis result showed that, the support vector machine (SVM) has better accuracy and less number of misclassification rate and better precision than the decision tree algorithm. The average accuracy of the support vector machine (SVM) is 91.92 % and that of the decision tree classification model is 87.12 %.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Computer Science Applications,General Engineering,Environmental Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of PCA on Lung Cancer Dataset Classification: A Comparitive Analysis of Machine Learning Models;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

2. Breast Cancer Prediction Using Different Machine Learning Algorithm;Advances in Intelligent Systems and Computing;2023

3. Comparison of Logistic Regression, K-Nearest Neighbour, and decision tree (C4.5) on parameter optimization to increase prediction of breast cancer;AIP Conference Proceedings;2023

4. A cost-sensitive logistic regression model for breast cancer detection;The Imaging Science Journal;2022-01-02

5. Breast Cancer Detection with Revamped Dataset Using Machine Learning Techniques;Journal of Medical Imaging and Health Informatics;2021-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3