Breast Cancer Detection with Revamped Dataset Using Machine Learning Techniques

Author:

Balaraman Sundarambal1,Ramamoorthy Ramesh1,Krishnamoorthi Raja2

Affiliation:

1. Chennai Institute of Technology, Chennai 600069, India

2. Vignan’s Institute of Management and Technology for Women, Medchal-Malkajgiri(D), 501301, Telangana, India

Abstract

Machine learning is a current topic of interest in research and industry, with the implementation of novel strategies all the time. The main purpose of this research activity is to determine the efficiency of machine learning techniques in the detection research of breast cancer. The incidence and mortality of breast cancer in women are increasing day by day. Worldwide, researchers have worked hard to help clinicians provide the best model for detecting diagnosis and breast cancer. In this work, learning UCI machine Wisconsin breast cancer data from a set of databases, model, and analyze the performance of existing work use, compared to the same data set. The dataset is analyzed, and the revamped dataset is constructed by eliminating redundant features and appending new features essential for prediction. Logistic regression, K nearest neighbors (KNN), support vector machine (SVM), decision trees, random forest, XGBoost, using a machine learning algorithm, such as re-organized data set of artificial neural network AdaBoost, 8 one of prediction build the model application (ANN). Standard to analyze the accuracy rate. In the experiment, these classifications have been shown to work for breast cancer with >97% accuracy. Logistic regression, XGBoost and Adaboost, stand on top with 99.28 percent accuracy. The experiment also, the balanced data set of removal outliers and balance, shows that have a significant impact on the model’s prediction performance.

Publisher

American Scientific Publishers

Subject

Health Informatics,Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3