RSSI Filtering Methods Applied to Localization using Bluetooth Low Energy

Author:

Abstract

Bluetooth Low Energy or BLE is a technology targeting mostly small-scale IoT applications including wearables and broadcasting beacons that require devices to send small amounts of data using minimal power. This paper focuses on our implementation, which is a system, designed to filter RSSI (Received Signal Strength Indicator), calculate the co-ordinates of a BLE device that is programmed as a Beacon and display the coordinates. Since RSSI is susceptible to noise and a downgrade in its reliability is unavoidable, several filtration methods have been used. The ‘Kalman – Histogram’ method, which incorporates the usage of a histogram of the RSSI readings along with the Kalman filter, is our own approach to tackle issues regarding noisy RSSI readings. The localization of stationary ‘Assets’, has been evaluated using the Trilateration algorithm: a result in mathematics which is used to locate a single point using its distance from three or more other points. The purpose of this research work is to provide a comparative result analysis of the results obtained using the aforementioned filters, indicating the effect of these filters on our localization system. As our research suggests, the ‘Kalman – Histogram’ filter performs better as compared to other filters and can be used in localization applications for better accuracy.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Subject

Management of Technology and Innovation,General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. BLE-Based Indoor Localization: Analysis of Some Solutions for Performance Improvement;Sensors;2024-01-08

2. Localization Technique using Bluetooth;2022 International Conference on Industry 4.0 Technology (I4Tech);2022-09-23

3. TEMPSENSE: LoRa Enabled Integrated Sensing and Localization Solution for Water Quality Monitoring;IEEE Transactions on Instrumentation and Measurement;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3