MALARIA PREDICTION MODEL USING ADVANCED ENSEMBLE MACHINE LEARNING TECHNIQUES

Author:

Adamu Yusuf Aliyu

Abstract

Malaria is a life-threatening disease that leads to death globally, its early prediction is necessary for preventing the rapid transmission. In this work, an enhanced ensemble learning approach for predicting malaria outbreaks is suggested. Using a mean-based splitting strategy, the dataset is randomly partitioned into smaller groups. The splits are then modelled using a classification and regression tree, and an accuracy-based weighted aging classifier ensemble is used to construct a homogenous ensemble from the several Classification and Regression Tree models. This approach ensures higher performance is achieved. Seven different Algorithms were tested and one ensemble method is used which combines all the seven classifiers together and finally, the accuracy, precision, and sensitivity achieved for the proposed method is 93%, 92%, and 100% respectively, which outperformed better than machine learning classifiers and ensemble method used in this research. The correlation between the variables used is established and how each factor contributes to the malaria incidence. The result indicates that malaria outbreaks can be predicted successfully using the suggested technique.

Subject

Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Drug Discovery,Pharmaceutical Science,Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revolutionizing Malaria Prediction Using Digital Twins and Advanced Gradient Boosting Techniques;Advances in Medical Technologies and Clinical Practice;2024-06-28

2. Hybrid Machine Learning Algorithm for Prediction of Malaria;Proceedings of Fourth International Conference on Computing, Communications, and Cyber-Security;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3