Abstract
Malaria is a life-threatening disease that leads to death globally, its early prediction is necessary for preventing the rapid transmission. In this work, an enhanced ensemble learning approach for predicting malaria outbreaks is suggested. Using a mean-based splitting strategy, the dataset is randomly partitioned into smaller groups. The splits are then modelled using a classification and regression tree, and an accuracy-based weighted aging classifier ensemble is used to construct a homogenous ensemble from the several Classification and Regression Tree models. This approach ensures higher performance is achieved. Seven different Algorithms were tested and one ensemble method is used which combines all the seven classifiers together and finally, the accuracy, precision, and sensitivity achieved for the proposed method is 93%, 92%, and 100% respectively, which outperformed better than machine learning classifiers and ensemble method used in this research. The correlation between the variables used is established and how each factor contributes to the malaria incidence. The result indicates that malaria outbreaks can be predicted successfully using the suggested technique.
Subject
Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Drug Discovery,Pharmaceutical Science,Pharmacology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Revolutionizing Malaria Prediction Using Digital Twins and Advanced Gradient Boosting Techniques;Advances in Medical Technologies and Clinical Practice;2024-06-28
2. Hybrid Machine Learning Algorithm for Prediction of Malaria;Proceedings of Fourth International Conference on Computing, Communications, and Cyber-Security;2023