Revolutionizing Malaria Prediction Using Digital Twins and Advanced Gradient Boosting Techniques

Author:

Vedula Lasya1,C. Kishor Kumar Reddy1,Pilly Ashritha1ORCID,Doss Srinath2

Affiliation:

1. Stanley College of Engineering and Technology for Women, India

2. Botho University, Botswana

Abstract

A persistent global health concern is malaria, a potentially fatal illness caused by Plasmodium parasites spread by Anopheles mosquitoes. The most severe instances are caused by Plasmodium falciparum, with common symptoms including fever, chills, headaches, and exhaustion. Machine learning has proven effective for forecasting malaria epidemics, particularly with sophisticated methods like gradient boosting. This study investigates the algorithm's effectiveness in predicting malaria prevalence using numerical datasets. The gradient boosting algorithm can reliably examine variables, including location, climate, and past incidence rates. With the use of numerical datasets, the gradient boosting technique produces remarkable results in 98.8% accuracy, 0.012 mean absolute error, and 0.10 root mean squared error for predicting the incidence of malaria. Gradient boosting demonstrates potential in tackling the worldwide health issue of malaria, confirming its accuracy and practical applicability for prompt epidemic responses.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3