DEVELOPMENT OF NANOSPONGES-BASED TOPICAL FORMULATION FOR THE EFFECTIVE DELIVERY OF SELECTED ANTIFUNGAL DRUG

Author:

ANUSHA RUDROJU,M. MOTHILALORCID

Abstract

Objective: To increase luliconazole's therapeutic impact, distribution, and preservation, this project is aimed to prepare cyclodextrin-based nanosponge gel and test its topical skin administration. Methods: The convection heating method produced cyclodextrin-diphenylcarbonate nanosponges, which later loaded with luliconazole by freeze-drying. Response Surface Methodology (RSM) was used to examine the association between procedure parameters and quality variables. Pilot study findings were analyzed using Analysis of variance. Key technique factors affect quality metrics in contour, RSM, and perturbation graphs. Results: The mean medication payload was 42.19±1.45 mg of luliconazole/g of lyophilized powder. The remarkable encapsulation efficiency of luliconazole (90.12±0.92%) supports an inclusion complex. Laser light scattering evaluation of luliconazole-loaded-nanosponges shows an unimodal and narrow particle size distribution of 60-73 nm. Drug encapsulation does not change a typical nanosponge's spherical form, according to microscopic investigations. Physico-chemical characterized verified the nanosponge-luliconazole inclusion complex. The complex release is faster than pure medication in vitro. Pure luliconazole dissolves 12% in 12 h, whereas nanosponge encapsulated medicine is absorbed faster and better. After 12 h, nanosponge formulations released 93-95% luliconazole. A model carbopol gel formulation with nanosponge formulations examined skin permeability, antifungal effectiveness, and stability. In 12 h skin permeation trials, nanosponge-encapsulated luliconazole leaked slowly across rat skin. Conclusion: The slow drug release, greater skin penetration, and superior storage stability of the gel formulation based on cyclodextrin nanosponges of luliconazole imply that it has great potential as a topical delivery system.

Publisher

Innovare Academic Sciences Pvt Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3