DEVELOPMENT OF NANO BASED FILM FORMING GEL FOR PROLONGED DERMAL DELIVERY OF LULICONAZOLE

Author:

SUBAIR T. K.ORCID,MOHANAN JISHA

Abstract

Objective: Luliconazole (LZL) has low aqueous solubility that limits its dermal bioavailability and acts as a barrier to topical delivery. The conventional topical formulations have a limited ability to retain the drug over the skin for a prolonged period. The main objective of the study was to formulate and characterize LZL loaded ethyl cellulose (EC) nanoparticles and formulate them as a film-forming gel (FFG) for prolonged delivery in fungal skin infections.Methods: The solvent evaporation technique was used for the preparation of nanoparticles of LZL by using EC as a polymer. The prepared nanoparticles were evaluated for physical appearance, production yield, entrapment efficiency, drug content, particle size, zeta potential, Polydispersity index (PDI), and in vitro drug release. Then the nanoparticles were incorporated into FFG formulation by using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA) as the gelling agent. The prepared FFG was evaluated for pH, Viscosity, Spreadability, in vitro drug release studies, in vitro antifungal studies, and release kinetic studies.Results: The optimized nanoparticle formulation F5 having drug to polymer ratio of 1:2 showed satisfactory production yield (86.32%), entrapment efficiency (83.36%), drug content (42.86), particle size (125.3), and 93.72% of in vitro drug release after 24 h (h). The optimized FFG formulation FFG4 showed the shortest film-forming time of 5.06 min (min), percentage Cumulative drug release of 92.18% after 24 h, and had promising in vitro antifungal activity.Conclusion: The prepared FFG could be used with promising potential for fungal infection of the skin.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science,Pharmacology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3