DESIGN AND OPTIMIZATION OF FLUCONAZOLE-LOADED PHARMACOSOME GEL FOR ENHANCING TRANSDERMAL PERMEATION AND TREATING FUNGAL INFECTIONS THROUGH BOX-BEHNKEN DESIGN

Author:

NAVEENTAJ S.ORCID,MUZIB Y. INDIRAORCID,RADHA R.

Abstract

Objective: The objective of the selected study was to develop and statistically optimize fluconazole (drug) loaded pharmacosomes (carrier) to enhance transdermal permeation by incorporating into gel base and to treat fungal infections by selecting the Box-Behnken model. Methods: Fluconazole is an antifungal drug which belongs to BCS class-II with high permeability and choice for topical drug delivery. In the study, the levels of the lecithin (lipid), dichloromethane and DMSO are selected as independent variables were varied to study the influence on particle size, % entrapment efficiency and in vitro drug release as dependent variables. Factorial designs through software Design expert version 13 (Box-Behnken design) is applied for this study and the optimization process was carried out using the desirability plots and point prediction techniques. Results: Results of the study with the application of a design expert shows that the optimized drug-loaded pharmacosomes with vesicle size of 158.87±0.56 nm as predicted and zeta potential of-30.6mV indicating good stability of the formulation, entrapment efficiency of 90.6±1.12% and in vitro drug release of 97.59±1.84% respectively. The optimized formulation loaded into gel base and compared with the marketed gel formulation. All the evaluation parameters confirmed that the physical mixture of drug and excipients was compatible without any interactions. Conclusion: Through obtained results, it’s concluded that; the independent variable plays a crucial role in optimizing formulation. Study data provided strong evidence that the optimized vesicular formulation through Box-Behnken factorial design can be potentially useful as a drug carrier for loading drug of selected category for enhancing transdermal delivery.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3