BOX-BEHNKEN DESIGN OPTIMIZATION OF SALICYLIC ACID LOADED LIPOSOMAL GEL FORMULATION FOR TREATMENT OF FOOT CORN

Author:

CHANDWANI SHUBHRIKA,SAINI T. R.,SONI REENA,PASWAN SURESH K.ORCID,SONI PRAKASH K.ORCID

Abstract

Objective: The present research is aimed to design and optimize a liposomal gel formulation of salicylic acid (SA) for enhanced drug permeation, higher skin drug retention, sustained release drug delivery and reduced side effects in the effective treatment of foot corn. Methods: Formulation designing and optimization of SA-loaded liposomes was done by box-Behnken experimental design using the three-factor, three-level approach. Phospholipid content, cholesterol content and drug content were selected as independent variables; while the critical quality attributes (CQAs) of liposomal formulation like particle size, PDI, zeta potential, entrapment efficiency and cumulative % drug release were considered as response variables. The SA-loaded liposomes were prepared by ethanol injection method and were characterized for desired CQAs. Finally, topical gel formulation of SA-loaded liposomes was developed and evaluated for drug content, homogeneity, spreadability, in vitro drug release, drug release kinetics, ex-vivo drug permeation and skin retention properties. Results: The particle size, PDI, zeta potential, entrapment efficiency and cumulative % drug release of SA-loaded liposomes was found to be 261.2 nm, 0.28, 0.7 mV, 57.53% and 99.57%, respectively. Developed topical gel formulation of SA-loaded liposomes exhibited a sustained drug release profile (64.48% cumulative release over 360 min) following Higuchi model kinetics. The developed formulation showed almost 2-fold enhanced drug permeation (i.e., 26.50%) and more than 2-fold higher drug retention (i.e., 10.90%) on porcine ear skin as compared to the plain salicylic acid gel. Conclusion: The SA-loaded liposomes and developed topical gel formulation possessed all desired CQAs. The in vitro drug release kinetics, ex-vivo drug permeation and skin retention studies confirmed the suitability of the developed formulation for topical application in the effective treatment of foot corn.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3