D-OPTIMAL MIXTURE DESIGN: OPTIMIZATION, FORMULATION, AND EVALUATION OF BIOSYNTHESIS NANOGOLD GELS

Author:

PERTIWI RATIH DYAHORCID,SETYOWATI ERNA PRAWITAORCID,MARTIEN RONNY,SUWALDI

Abstract

Objective: The aim of this research is the Optimization, formulation, and evaluation of biosynthesis nanogold gels by using experimental design. Investigations were provided to optimize the biosynthesis of nanogold gels on a compound of two gelling agents and develop the biosynthesis of nanogold gels. Methods: The optimization of the formula of gels utilizing the D Optimum Mixture Design method to discover the optimum result with the ratio of carbopol (X1) and hydroxypropyl methylcellulose/HPMC (X2) as a gelling agent and responses in the form were particle size (Y1), zeta potential (Y2) and spreading capacity (Y3). The 8-run formula assessed the impact of carbopol (X1) and HPMC (X2). Results: The ANOVA results for particle size showed that the model is highly statistically significant (P<0.05). Both Carbopol and HPMC coefficients enhanced the particle size (+118.91 and+594.73). The interaction of Carbopol with HPMC has increased the particle size (+441.73). The HPMC has the most dominant effect in increasing the particle size, and exchanging the two gelling agents will increase the particle size. Both Carbopol and HPMC coefficients are negative (-7.94 and-10.96), which means that these components contribute to a decrease in the zeta potential. The interaction of Carbopol with HPMC does not affect both increasing or decreasing the zeta potential HPMC has the most dominant effect in reducing the zeta potential, and the exchange of the two gelling agents will not increase and decrease the zeta potential. Carbopol and HPMC coefficients are positive (+6.41 and+4.58), meaning these components enhance the spreading capacity. The interaction of Carbopol with HPMC has decreased (-1.58). The prediction value was obtained from a solution that has the highest desirability. The chosen desirability of certain balances was 0.572. Conclusion: This study has shown that a well-balanced mixture of matrix ingredients could improve nanogold biosynthesis gel. Optimization was possible by applying D optimal mixture design, which confirmed efficiency in designing the nanoparticles gels of gold dosage forms.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3