PHYTOSYNTHESIS AND CHARACTERIZATION OF SILVER NANOPARTICLES FROM RUELLIA TUBEROSA (L.): EFFECT OF PHYSICOCHEMICAL PARAMETERS

Author:

M HARIKA,P RADHIKA

Abstract

Objective: The current study focused on synthesizing silver nanoparticles (AgNPs) using Ruellia tuberosa aqueous tuber extract (RTTE) and silver nitrate (AgNO3) solution. Methods: AgNPs were synthesized using an aqueous tuber extract of the medicinal herb R. tuberosa (L.). The existence of significant phytoconstituents involved in synthesizing the AgNPs was determined using the gas chromatography–mass spectrometry (GC–MS) study. We evaluated the physical and chemical parameters such as the effect of time, temperature, metal ion concentration, crude aqueous tuber extract concentration, and pH in the synthesis of nanoparticles. The AgNPs were characterized using ultraviolet (UV)–Vis spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscope (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) techniques. Results: R. tuberosa tuber extract was rich in various phytochemical constituents which were identified by GC–MS. For biosynthesis, the optimal values were 1 mM AgNO3concentration, 0.1 mL of aqueous tuber extract, and a 40 min incubation temperature of 70°C. The existence of a characteristic surface plasmon resonance (SPR) peak at 421 nm indicated the biosynthesis of AgNPs using UV–Vis spectroscopy. At higher temperatures and alkaline pH, the development of AgNPs increased overtime and remained stable up to 4 weeks. FESEM, EDX, HRTEM, SAED, and XRD analysis revealed that most AgNPs were spherical, with an average size distribution of 34.9 nm and a crystalline phase, face-centered cubic lattice. Infrared (FTIR) spectroscopic analysis revealed that hydroxyl and amino functional groups were involved in the biosynthesis and stabilization of AgNPs. Conclusion: The synthesis of AgNPs from R. tuberosa aqueous tuber extract was a cost-effective process and environmental friendly.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmacology (medical),Pharmaceutical Science,Pharmacology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3