SUSTAINABLE SYNTHESIS AND CHARACTERIZATION OF TUNABLE AND MULTIPURPOSE NANOCELLULOSE FROM FRESHWATER AQUATIC WEED AS PHARMACEUTICAL EXCIPIENT

Author:

MOHARIR KESHAV S.,BHELKAR KRISHNAKANT B.ORCID,KALE VINITA V.,ITTADWAR ABHAY M.

Abstract

Objective: The main objective of this work was to understand the basic properties of crystalline nanocellulose (CNC) that can be useful as a novel excipient in pharmaceutical formulations. This covers the isolation and preparation of nanocellulose followed by characterization. Methods: Cellulose was isolated from aquatic weed by autoclaving and bleaching. Cellulose to CNC conversion involved gluconic acid treatments at different concentrations (40%, 50% and 60%) followed by centrifugation and neutralization. CNC was further characterized by Differential Scanning Calorimetry (DSC) and Thermo gravimetric Analysis (TGA), Field Emission Scanning Electron Microscopy (FE-SEM) and Atomic Force Microscopy (AFM) for surface morphology, elemental analysis by Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), crystallinity index by X-Ray Diffraction (XRD), and optical microscopy. Results: Acid concentration affects the moisture uptake, particle size, and yield of CNC. CNC size ranged from 350 nm to 900 nm with a crystallinity index 80% to 85%. Moisture uptake was 6.38±0.12% at 33% relative humidity. DSC and TGA established thermal stability over 200 °C. Nanocellulose has shown Angle of repose (28.81°), Carrs index (12.32), zeta potential (33mV) values and heavy metals within pharmacopoeial limits. Conclusion: CNC from water hyacinth was prepared successfully by sustainable process. CNC physico-chemical characterization revealed the stable nature of CNC, suitable to be used as an excipient in pharmaceutical formulations.

Publisher

Innovare Academic Sciences Pvt Ltd

Subject

Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3