DEVELOPMENT OF MYCROCRYSTALLINE CELLULOSE ORIGINATE FROM SAGO (METROXYLON SAGU) STEM BARK BY HYDROLISIS METHODE USING NITRIC ACID

Author:

AKIB NUR ILLIYYINORCID,SRIWIDODO ,LUBIS ADRYAN FRISTIOHADY,SYNTIA SAMANI MERY DINA,FAHMI NUR AHMAD,ANDRIANI RINAORCID,CHAERUNISAA ANIS YOHANAORCID

Abstract

Objective: Microcrystalline cellulose (MCC) is an essential excipient in tablet formulation. Mostly MCC was obtained from wooden conifer stem fiber, therefore environment issues had been came up. Alternative sources for MCC which offer friendly conifer wood need to be explored. This study aimed to isolate and determine the characteristics of MCC originated from Sago (Metroxylon sago Rottb.) stem fibers as an promising alternative of MCC. Methods: MCC was prepared through pre-hydrolysis using an acetic acid solution, alkali heating using NaOH solution, and acid hydrolysis using nitric acid 0.3 N using three variations of heating temperature, namely 90, 95 and 100 °C. The characterization carried out were pharmaceutical grade, powder properties, FTIR analysis and powder morphology by SEM. Results: The yields obtained were 66.02; 65.53 and 65.08%, respectively. The characteristics of the MCC sample based on pharmaceutical grade quality were white to yellowish white powder, odorless, tasteless, insoluble in: ether, 96% alcohol, HCl 2N and NaOH 1N. The pH of the MCC suspension were 5.07-5.12, while moisture content were 3.67-4.17%, with loss on drying value as much as 0.37-0.4%, and ash content 1-2.17%. The value of permanganate number were 0.09-0.11, Hausner factor was between 1.05-1.25, and angle of repose were between 11.4-24.8°. Conclusion: Based on the results, it can be concluded that Sago is potent natural resource for MCC. The resulting MCC revealed physicochemical and characteristic of MCC, which almost similar to Avicel PH 102 as standard.

Publisher

Innovare Academic Sciences Pvt Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3