Real-time Arabic Video Captioning Using CNN and Transformer Networks Based on Parallel Implementation

Author:

Yousif Adel Jalal,Al-Jammas Mohammed H.

Abstract

Video captioning techniques have practical applications in fields like video surveillance and robotic vision, particularly in real-time scenarios. However, most of the current approaches still exhibit certain limitations when applied to live video, and research has predominantly focused on English language captioning. In this paper, we introduced a novel approach for live real-time Arabic video captioning using deep neural networks with a parallel architecture implementation. The proposed model primarily relied on the encoder-decoder architecture trained end-to-end on Arabic text. Video Swin Transformer and deep convolutional network are employed for video understanding, while the standard Transformer architecture is utilized for both video feature encoding and caption decoding. Results from experiments conducted on the translated MSVD and MSR-VTT datasets demonstrate that utilizing an end-to-end Arabic model yielded better performance than methods involving the translation of generated English captions to Arabic. Our approach demonstrates notable advancements over compared methods, yielding a CIDEr score of 78.3 and 36.3 for the MSVD and MSRVTT datasets, respectively. In the context of inference speed, our model achieved a latency of approximately 95 ms using an RTX 3090 GPU for a temporal video segment with 16 frames captured online from a camera device.

Publisher

University of Diyala, College of Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3