Machine Learning Approach to Combat False Alarms in Wireless Intrusion Detection System

Author:

Vijayakumar D. Sudaroli,Ganapathy S.

Abstract

Wireless Networks facilitate the ease of communication for sharing the crucial information. Recently, most of the small and large-scale companies, educational institutions, government organizations, medical sectors, military and banking sectors are using the wireless networks. Security threats, a common term found both in wired as well as in wireless networks. However, it holds lot of importance in wireless networks because of its susceptible nature to threats. Security concerns in WLAN are studied and many organizations concluded that Wireless Intrusion Detection Systems (WIDS) is an essential element in network security infrastructure to monitor wireless activity for signs of attacks. However, it is an indisputable fact that the art of detecting attacks remains in its infancy. WIDS generally collect the activities within the protected network and analyze them to detect intrusions and generates an intrusion alarm. Irrespective of the different types of Intrusion Detection Systems, the major problems arising with WIDS is its inability to handle large volumes of alarms and more prone to false alarm attacks. Reducing the false alarms can improve the overall efficiency of the WIDS. Many techniques have been proposed in the literature to reduce the false alarm rates. However, most of the existing techniques are failed to provide desirable result and the high complexity to achieve high detection rate with less false alarm rates. This is the right time to propose a new technique for providing high detection accuracy with less false alarm rate. This paper made an extensive survey about the role of machine learning techniques to reduce the false alarm rate in WLAN IEEE 802.11. This survey proved that the substantial improvement has been achieved by reducing false alarm rate through machine learning algorithms. In addition to that, advancements specific to machine learning approaches is studied meticulously and a filtration technique is proposed.

Publisher

Canadian Center of Science and Education

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3