Economic Impact of Energy Efficiency Policies: A Scenario Analysis

Author:

Beccarello Massimo,Foggia Giacomo Di

Abstract

The number of countries that have pledged to uphold the 2050 decarbonization targets is constantly growing, and many have established strategies and planned related investments for the coming years. The economic impact of decarbonization and energy efficiency policies has become a major topic of discussion in the global effort to mitigate climate change and contain the temperature rise to less than 2 degrees. Previous literature has identified the risks and opportunities of decarbonization policies, especially concerning the rebound effects and the situation that may arise if, due to persistent biases and the costs of fulfilling climate policies, industries were to transfer production to countries where laxer emission constraints are in force. At the core of the 2030 Agenda for Sustainable Development is the Sustainable Development Goals, which are a global call for action regardless of countries’ level of economic development. With Goal 12 on sustainable production and consumption and Goal 14 on climate change mitigation in mind, we provide an economic impact analysis of decarbonization and energy efficiency policies. We compare two scenarios based on the Italian context. The reference scenario is a simulation that shows the development of energy-efficient technologies if the targets set in the national energy strategy were to be met without additional binding targets being added. The policy scenario sees energy efficiency as the principal driver of decarbonization in the presence of a national emissions constraint lasting until 2030, as envisaged by the European Commission. The results confirm that certain risks and opportunities arise from effective policymaking. The effects of decarbonization and energy efficiency policies in the reference scenario would increase final demand by approximately €278.34 billion and the policy scenario would increase it by approximately €380.36 billion by 2030.

Publisher

Canadian Center of Science and Education

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3