GLOMERULAR PERMEABILITY

Author:

Venkatachalam M. A.1,Karnovsky Morris J.1,Cotran Ramzi S.1

Affiliation:

1. From the Harvard Pathology Unit, Mallory Institute of Pathology, Boston City Hospital, Boston, Massachusetts 02118, and the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115

Abstract

Wistar/Furth rats were made nephrotic by daily administration of amino-nucleoside of puromycin, and the ultrastructural localization of horseradish peroxidase (mol wt 40,000) in the renal glomerulus was studied from 1 min to 20 hr after intravenous injection of the tracer. In control rats, peroxidase permeated the endothelial fenestrae, the basement membrane, and the epithelial slits, and was present in tubular lumina. Nephrotic glomeruli showed relatively normal basement membranes, extensive fusion of foot processes with formation of "close" intercellular junctions, and large vacuoles and pockets in epithelial cells. On serial sections some of the epithelial vacuoles communicated on one side with the extracellular space overlying basement membrane, and on the other side with the urinary space. In nephrotic animals, peroxidase permeated the basement membrane and the close junctions, and was present in many of the vacuoles and pockets as early as 1 min after injection. Only small numbers of peroxidase-positive vacuoles remained in. epithelial cells 1 hr or more after injection of the tracer. It is suggested that the epithelial pockets and vacuoles form pathways across which leaking proteins can be transferred across the epithelium into the urinary space. Epithelial vacuoles may also be absorption droplets designed to "conserve" leaking proteins, but this function was not prominent in our experiments with peroxidase.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3