Effects of Perfusion Pressures on Podocyte Loss in the Isolated Perfused Mouse Kidney.

Author:

Abstract

BACKGROUND/AIMS: Podocytes are lost in most glomerular diseases, leading to glomerulosclerosis and progressive kidney disease. It is generally assumed, that podocytes are exposed to the filtration flow and thus to significant shear forces driving their detachment from the glomerular basement membrane (GBM). In this context, foot process effacement has been proposed as potential adaptive response to increase adhesion of podocytes to the GBM. METHODS: We have tested these hypotheses using optical clearing and high-resolution 3-dimensional morphometric analysis in the isolated perfused murine kidney. We investigated the dynamics of podocyte detachment at different perfusion pressures (50, 300 and more than 450 mmHg) in healthy young or old mice (20 vs. 71 weeks of age), or mice injected with anti-GBM serum to induce global foot process effacement. RESULTS: Results show that healthy podocytes in young mice are tightly attached onto the GBM and even supramaximal pressures did not cause significant detachment. Compared to young mice, in aged mice and mice with anti-GBM nephritis and foot process effacement, gradual progressive loss of podocytes had occurred already before perfusion. High perfusion pressures resulted in a relatively minor additional loss of podocytes in aged mice. In mice with anti-GBM nephritis significant additional podocyte loss occurred at this early time point when increasing perfusion pressures to 300 mmHg or higher. CONCLUSION: This work provides the first experimental evidence that podocytes are extraordinarily resistant to acutely increased perfusion pressures in an ex vivo isolated kidney perfusion model. Only in glomerular disease, significant numbers of injured podocytes detached following acute increases in perfusion pressure.

Publisher

Cell Physiol Biochem Press GmbH and Co KG

Subject

Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3