Aging and arteriosclerosis. The increased proliferation of arterial smooth muscle cells isolated from old rats is associated with increased platelet-derived growth factor-like activity.

Author:

McCaffrey T A1,Nicholson A C1,Szabo P E1,Weksler M E1,Weksler B B1

Affiliation:

1. Department of Medicine, Cornell University Medical College, New York 10021.

Abstract

In vivo studies have suggested that the aorta from an old animal responds to injury with an exaggerated proliferation of smooth muscle cells (SMCs) compared with the response of this aorta from a young animal. In this study we compared proliferation of SMCs derived from uninjured old (less than 19 mo) and young (3-4 mo) rat aortas. Old SMCs grew more rapidly than young SMCs in the presence of medium containing competence factors (10% FCS or platelet-derived growth factor [PDGF]) as well as in their absence (2% PDS or serum-free media) as determined both by a short-term thymidine incorporation assay and by cell counts. Lysates prepared from old SMCs that had been grown in the absence of serum or PDGF stimulated proliferation of target cells more than lysates prepared from young SMCs; the effect was inversely related to cell density of the SMCs. This stimulatory effect of lysates was completely blocked by antibody to PDGF. After the growth-promoting activity of lysates was eliminated by anti-PDGF, growth-inhibiting activity was revealed. Lysates prepared from old SMCs had significantly less capacity to inhibit target cell growth. In the presence of exogenous heparin both the serum- or PDGF-stimulated proliferation and serum-free proliferation of old SMCs were decreased to the level of proliferation of young SMCs. These results suggest that the balance between growth-promoting and growth-inhibiting factors is altered in SMCs from old rats. This may contribute to the increased proliferative capacity of these cells in culture and may facilitate the development of atherosclerosis with age.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3