Age-Dependent and -Independent Effects of Perivascular Adipose Tissue and Its Paracrine Activities during Neointima Formation

Author:

Schütz Eva,Gogiraju Rajinikanth,Pavlaki Maria,Drosos Ioannis,Georgiadis George S.,Argyriou Christos,Rim Ben Hallou AminaORCID,Konstantinou Fotios,Mikroulis Dimitrios,Schüler Rebecca,Bochenek Magdalena L.,Gachkar Sogol,Buschmann Katja,Lankeit Mareike,Karbach Susanne H.ORCID,Münzel ThomasORCID,Tziakas Dimitrios,Konstantinides Stavros,Schäfer Katrin

Abstract

Cardiovascular risk factors may act by modulating the composition and function of the adventitia. Here we examine how age affects perivascular adipose tissue (PVAT) and its paracrine activities during neointima formation. Aortic tissue and PVAT or primary aortic smooth muscle cells from male C57BL/6JRj mice aged 52 weeks (“middle-aged”) were compared to tissue or cells from mice aged 16 weeks (“adult”). Vascular injury was induced at the carotid artery using 10% ferric chloride. Carotid arteries from the middle-aged mice exhibited smooth muscle de-differentiation and elevated senescence marker expression, and vascular injury further aggravated media and adventitia thickening. Perivascular transplantation of PVAT had no effect on these parameters, but age-independently reduced neointima formation and lumen stenosis. Quantitative PCR analysis revealed a blunted increase in senescence-associated proinflammatory changes in perivascular tissue compared to visceral adipose tissue and higher expression of mediators attenuating neointima formation. Elevated levels of protein inhibitor of activated STAT1 (PIAS1) and lower expression of STAT1- or NFκB-regulated genes involved in adipocyte differentiation, inflammation, and apoptosis/senescence were present in mouse PVAT, whereas PIAS1 was reduced in the PVAT of patients with atherosclerotic vessel disease. Our findings suggest that age affects adipose tissue and its paracrine vascular activities in a depot-specific manner. PIAS1 may mediate the age-independent vasculoprotective effects of perivascular fat.

Funder

BMBF

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3