Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype.

Author:

Post T W1,Liszewski M K1,Adams E M1,Tedja I1,Miller E A1,Atkinson J P1

Affiliation:

1. Department of Medicine, Washington, University School of Medicine, St. Louis, Missouri 63110.

Abstract

Membrane cofactor protein (MCP) is a complement regulatory protein that is expressed on human cells and cell lines as two relatively broad species with Mr of 58,000-68,000 and 48,000-56,000. The structure of a previously reported cDNA clone indicated that MCP was a type 1 membrane glycoprotein and a member of the regulators of complement activation gene/protein cluster. However, it did not provide an explanation for the unusual phenotypic pattern of MCP. Therefore, in parallel with an analysis of the gene, additional cDNAs were cloned and characterized. Six different MCP cDNA classes were identified. All encode the same 5' untranslated signal peptide, four SCRs, transmembrane domain, and basic amino acid anchor. However, they differ in the length and composition of an extracellular serine/threonine/proline (STP)-rich area, a site of heavy O-glycosylation, and cytoplasmic tail. Analysis of the MCP gene demonstrated that the variation in cDNA structure was a result of alternative splicing. Peripheral blood cells and cell lines predominantly expressed four of the six isoforms. These varied by the presence or absence of an STP-rich segment of 15 amino acids (STPB) and by the use of one of two cytoplasmic domains. Analysis by polymerase chain reaction, Northern blots, and transfection indicated that the predominance of MCP cDNA isoforms with STPB correlated with the high molecular weight protein phenotype, while the predominance of isoforms without STPB correlated with the lower molecular weight phenotype. The expression in a single cell of four distinct protein species with variable STP-rich regions and cytoplasmic tails represents an interesting example of the use of alternative splicing to provide variability in a mammalian protein.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3