TBK1 recruitment to STING mediates autoinflammatory arthritis caused by defective DNA clearance

Author:

Li Tong123ORCID,Yum Seoyun12ORCID,Li Minghao12ORCID,Chen Xiang124ORCID,Zuo Xiaoxia3ORCID,Chen Zhijian J.124ORCID

Affiliation:

1. Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX

2. Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX

3. Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan, China

4. Howard Hughes Medical Institute, Chevy Chase, MD

Abstract

Defective DNA clearance in DNase II−/− mice leads to lethal inflammatory diseases that can be rescued by deleting cGAS or STING, but the role of distinct signaling pathways downstream of STING in the disease manifestation is not known. We found that the STING S365A mutation, which abrogates IRF3 binding and type I interferon induction, rescued the embryonic lethality of DNase II−/− mice. However, the STING S365A mutant retains the ability to recruit TBK1 and activate NF-κB, and DNase II−/−STING-S365A mice exhibited severe polyarthritis, which was alleviated by neutralizing antibodies against TNF-α or IL-6 receptor. In contrast, the STING L373A mutation or C-terminal tail truncation, which disrupts TBK1 binding and therefore prevents activation of both IRF3 and NF-κB, completely rescued the phenotypes of DNase II−/− mice. These results demonstrate that TBK1 recruitment to STING mediates autoinflammatory arthritis independently of type I interferons. Inhibiting TBK1 binding to STING may be a therapeutic strategy for certain autoinflammatory diseases instigated by self-DNA.

Funder

Cancer Prevention and Research Institute of Texas

Welch Foundation

Howard Hughes Medical Institute

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3