INHIBITION OF INFLUENZA VIRUS MULTIPLICATION BY ALKYL DERIVATIVES OF BENZIMIDAZOLE

Author:

Tamm Igor1,Folkers Karl1,Shunk Clifford H.1,Heyl Dorothea1,Horsfall Frank L.1

Affiliation:

1. From the Hospital of The Rockefeller Institute for Medical Research, New York, and the Research Laboratories of Merck & Company, Inc., Rahway, New Jersey

Abstract

The degree of inhibition of multiplication of influenza B virus, Lee strain, in membrane cultures in vitro appears to be directly related to the concentration of the inhibitory compounds used in this investigation. With each of the alkyl derivatives of benzimidazole, evidence for such a relationship was obtained in the range between 60 and 90 per cent inhibition of virus multiplication. Alteration of the structure of benzimidazole by substitution of alkyl radicals at various positions in either the benzene or the imidazole ring resulted in diverse differences in the capacity to inhibit influenza virus multiplication in vitro. Minor increases in inhibitory activity resulted when one to three methyl groups were introduced at certain positions in the molecule. Marked increases in inhibitory activity were achieved by more extensive substitution in either the benzene or the imidazole ring. The position and nature of substituent groups appeared to be of decisive importance. Among the more highly active compounds were 2,4,5,6,7-pentamethyl-benzimidazole, 5,6-diethylbenzimidazole, and 2-ethyl-5-methylbenzimidazole. Further extension of the alkyl chain at position 2 caused no significant change in the inhibitory activity of the derivative. The most active compounds studied caused 75 per cent inhibition of Lee virus multiplication in membrane cultures in vitro at concentrations of approximately 0.0002 M. Some of the implications of these findings are discussed.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3