Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates.

Author:

Murray H W,Cohn Z A

Abstract

A sensitive method for evaluating extracellular parasite viability was used to determine the in vitro susceptibility of virulent Toxoplasma gondii to selected oxygen intermediates. By acridine orange fluorescent staining criteria, toxoplasmas were resistant to up to either 10(-3) M reagent H2O2 or H2O2 generated by glucose-glucose oxidase. In keeping with a lack of sensitivity to H2O2, toxoplasmas contained endogenous catalase (5.7 x 10(-4) Baudhuin units/10(6) organisms). The addition of a peroxidase and halide, however, markedly accelerated killing and lowered the H2O2 requirement by 1,000-fold. In contrast, toxoplasmas were promptly killed after exposure to products generated by xanthine (1.5 x 10(-4) M) and xanthine oxidase (50 micrograms). The inhibition of this system's microbicidal activity by scavengers of O2- (superoxide dismutase) and H2O2 (catalase) indicated that although neither O2- nor H2O2 were toxoplasmacidal, their interaction was required for parasite killing. Quenching OH. and 1O2, presumed products of O2--H2O2 interaction, by mannitol, benzoate, diazabicyclooctane, and histidine, also inhibited toxoplasma killing by xanthine-xanthine oxidase. These findings suggested that O2- and H2O2 functioned in precursor roles and that OH. and 1O2 were toxoplasmacidal. The capacity of normal peritoneal macrophages to pinocytose an oxygen intermediate scavenger, soluble catalase, was also demonstrated. Appreciable extraphagosomal concentrations of catalase were achieved by exposing macrophages to 1 mg/ml of the enzyme for 3 h. Maintenance of high intracellular levels required constant exposure because interiorized catalase was rapidly degraded.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 162 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3