Tumor cell anti-oxidant defenses. Inhibition of the glutathione redox cycle enhances macrophage-mediated cytolysis

Author:

Nathan CF,Arrick BA,Murray HW,DeSantis NM,Cohm ZA

Abstract

The basis of resistance to oxidative injury was studied in six murine tumor cell lines that differed 54-fold in their resistance to enzymatically generated H(2)0(2). The tumors varied 56.7-fold in their specific activity of catalase, 5.3-fold in glutathione peroxidase (GPO), 3.3-fold in glutathione reductase (GR), and 2.7-fold in glutathione. There was no correlation among the levels of the three enzymes, and tumor cell resistance to lysis by H(2)0(2). However, the logarithm of the flux of H(2)0(2) necessary to cause 50 percent lysis of the tumor cells correlated with their content of glutathione (r = 0.91). The protective role of glutathione was analyzed by blocking GR and GPO, the catalysts of the glutathione redox cycle. This was facilitated by the demonstration that the anti-neoplastic agent 1,3-bis-(2- chloroethyl)-l-nitrosourea (BCNU) was a potent inhibitor of GR in intact tumor cells. BCNU inactivated tumor cell GR with a 50 percent inhibitory dose of 11 μM and a t(l/2) of inhibition of 30 s. Complete inhibition of GR was attained with no effect on GPO or catalase. Tumor cells whose GR was inactivated by BCNU could be lysed by fluxes of H(2)0(2) to which they were otherwise completely resistant. They could be killed by phorbol myristate acetate (PMA)-stimulated, bacilli Calmette-Guerin-activated macrophages in numbers which were otherwise insufficient, and by nonactivated macrophages, which otherwise were ineffective. BCNU-treated target cells were also much more sensitive to antibody-dependent, macrophage-mediated cytolysis. However, such tumor cells were no more sensitive than controls to lysis by alloreactive T cells or by antibody plus complement. Next, we deprived tumor cells of selenium by passage in selenium-deficient mice. GPO was inhibited 85 percent in such cells, with no effect on GR or catalase. Tumor cells with reduced GPO activity were markedly sensitized to lysis by small fluxes of H(2)0(2) or by PMA-stimulated macrophages or granulocytes. In contrast, inhibition of catalase with aminotriazole had no effect on the sensitivity of three tumors to peroxide-mediated lysis, and had modest effects with two others. Thus, the oxidation-reduction cycle of glutathione serves as one of the major defense mechanisms of tumor cells against three related forms of oxidant injury: lysis by fluxes of H(2)0(2), by PMA-triggered macrophages, and by macrophages in the presence of anti-tumor antibody.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3