Three spontaneous H-2Db mutants are generated by genetic micro-recombination (gene conversion) events. Impact on the H-2-restricted immune responsiveness.

Author:

Hemmi S1,Geliebter J1,Zeff R A1,Melvold R W1,Nathenson S G1

Affiliation:

1. Department of Microbiology, Albert Einstein College of Medicine, Bronx, New York 10461.

Abstract

Sequence analysis of the mutant Dbm13, Dbm14, and Dbm24 genes indicate that they differ from the parental Db gene by 4, 1, and 8 nucleotides, respectively. The mutant sequences substituted into Dbm13 and Dbm24 are identical to those found in the Kb gene, at the homologous positions. Thus, similar to the Kb gene, the Db gene is able to undergo micro-recombination (gene conversion) events with other class I genes. Such data suggest that micro-recombination events could be an important mechanism for the diversification of all H-2 genes. The Db mutant products share a common theme: the alterations in all occur at amino acid residues whose side chains in the homologous class I HLA-A2 molecule project into the postulated peptide antigen-binding cleft, and hence, would be expected to alter the binding of foreign or self peptides. Due to such changes, the bm14 mouse has become a nonresponder in the CTL response to Moloney murine leukemia virus (M-MuLV), as the alteration of one amino acid residue at position 70 (a Gln to His) is sufficient to entirely abrogate the cell-mediated response to the virus. On the other hand, the bm13 mouse has shifted the major part of its M-MuLV restriction to Kb, a profound alteration in CTL responsiveness due to the alteration of three amino acids (Leu to Gln at 114, Phe to Tyr at 116, and Glu to Asp at 119) in a peptide stretch of beta-pleated sheet structure lining the bottom of the antigen-binding cleft. Thus, study of these mutants reveals that, in one step, micro-recombination at the genetic level has resulted at the protein level in profound changes in the immune response to viral infection. Such a mechanism operating at the population level can be a driving force during evolution for modulating the character of CTL immunity.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3