Affiliation:
1. Department of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520
Abstract
Influenza virus infection is recognized by the innate immune system through Toll like receptor (TLR) 7 and retinoic acid inducible gene I. These two recognition pathways lead to the activation of type I interferons and resistance to infection. In addition, TLR signals are required for the CD4 T cell and IgG2a, but not cytotoxic T lymphocyte, responses to influenza virus infection. In contrast, the role of NOD-like receptors (NLRs) in viral recognition and induction of adaptive immunity to influenza virus is unknown. We demonstrate that respiratory infection with influenza virus results in the activation of NLR inflammasomes in the lung. Although NLRP3 was required for inflammasome activation in certain cell types, CD4 and CD8 T cell responses, as well as mucosal IgA secretion and systemic IgG responses, required ASC and caspase-1 but not NLRP3. Consequently, ASC, caspase-1, and IL-1R, but not NLRP3, were required for protective immunity against flu challenge. Furthermore, we show that caspase-1 inflammasome activation in the hematopoietic, but not stromal, compartment was required to induce protective antiviral immunity. These results demonstrate that in addition to the TLR pathways, ASC inflammasomes play a central role in adaptive immunity to influenza virus.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
572 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献