THE INTERACTION BETWEEN TOXOPLASMA GONDII AND MAMMALIAN CELLS

Author:

Jones Thomas C.1,Hirsch James G.1

Affiliation:

1. From The Rockefeller University, New York 10021

Abstract

Electron microscope methods have been used to study delivery of macrophage primary or secondary lysosomal contents to phagocytic vacuoles containing living or dead toxoplasmas. Secondary lysosomes were labeled by culturing the cells in colloidal thorium dioxide (thorotrast) or in ferritin. Acid phosphatase cytochemistry was employed for detection of primary as well as secondary lysosomal constituents. These various lysosomal labels were present in nearly all vacuoles containing toxoplasmas killed with glutaraldehyde, or in vacuoles containing those parasites undergoing degeneration 1 hr after the uptake of living toxoplasmas. In contrast, at times ranging from 1 to 20 hr after infection, no vacuoles containing morphologically normal, apparently viable toxoplasmas were thorotrast or ferritin positive, and only rarely did these vacuoles react for acid phosphatase. In many instances vacuoles containing viable toxoplasmas and no lysosomal markers were situated in the same cell nearby to vacuoles containing degenerating toxoplasmas and lysosomal constituents, thus indicating that the determinants of lysosomal fusion were operating locally in the immediate vicinity of the phagocytic vacuole, and not operating to influence general cell function. Thus, some toxoplasmas are able to prevent the delivery of lysosomal contents, and apparently the phagocytic vacuole provides for these parasites a sheltered microenvironment ideal for their growth. Morphologic evidence indicated that living toxoplasmas altered the phagocytic vacuolar membrane in macrophages, fibroblasts, and HeLa cells. Within minutes after phagocytosis, the vacuole became surrounded by closely apposed strips of endoplasmic reticulum and mitochondria; somewhat later, microvillous protrusions of the membrane into the vacuole were seen. These morphologic features of phagocytic vacuoles containing living toxoplasmas may be of importance in relation to the absence of lysosomal fusion, or they may serve some function in protecting the host cell or in nourishing the parasite.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3