Antigen-Independent Appearance of Recombination Activating Gene (Rag)-Positive Bone Marrow B Cells in the Spleens of Immunized Mice

Author:

Gärtner Frank1,Alt Frederick W.1,Monroe Robert J.1,Seidl Katherine J.1

Affiliation:

1. The Howard Hughes Medical Institute, the Children's Hospital, the Center for Blood Research, and the Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115

Abstract

Splenic B lineage cells expressing recombination activation genes (RAG+) in mice immunized with 4-hydroxy-3-nitrophenyl-acetyl coupled to chicken γ-globulin (NP-CGG) and the adjuvant aluminum-hydroxide (alum) have been proposed to be mature B cells that reexpress RAG after an antigen encounter in the germinal center (GC), a notion supported by findings of RAG expression in peripheral B lymphocyte populations activated in vitro. However, recent studies indicate that these cells might be immature B cells that have not yet extinguished RAG expression. Here, we employ RAG2–green fluorescent protein (GFP) fusion gene knock-in mice to show that RAG+ B lineage cells do appear in the spleen after the administration of alum alone, and that their appearance is independent of T cell interactions via the CD40 pathway. Moreover, splenic RAG+ B lineage cells were detectable in immunized RAG2-deficient mice adoptively transferred with bone marrow (BM) cells, but not with spleen cells from RAG+ mice. Although splenic RAG+ B cells express surface markers associated with GC B cells, we also find the same basic markers on progenitor/precursor BM B cells. Finally, we did not detect RAG gene expression after the in vitro stimulation of splenic RAG− mature B cells with mitogens (lipopolysaccharide and anti-CD40) and cytokines (interleukin [IL]-4 and IL-7). Together, our studies indicate that RAG+ B lineage cells from BM accumulate in the spleen after immunization, and that this accumulation is not the result of an antigen-specific response.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3