Clinical and Hematologic Effects of Endotoxin in Warts, Hypogammaglobulinemia, Infections, and Myelokathexis Syndrome Model Mice

Author:

Majumdar Shamik1,Gao Ji-Liang1,Pontejo Sergio M.1ORCID,Balabanian Karl2ORCID,Bachelerie Françoise3,Murphy Philip M.1

Affiliation:

1. *Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD;

2. †Université Paris-Cité, Institut de Recherche Saint-Louis, OPALE Carnot Institute, EMiLy, INSERM U1160, Paris, France; and

3. ‡Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Clamart, France

Abstract

Abstract Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome immunodeficiency is caused by autosomal dominant gain-of-function CXCR4 mutations that promote severe panleukopenia caused by bone marrow retention of mature leukocytes. Consequently, WHIM patients develop recurrent bacterial infections; however, sepsis is uncommon. To study this clinical dichotomy, we challenged WHIM model mice with LPS. The LD50 was similar in WHIM and wild-type (WT) mice, and LPS induced acute lymphopenia in WT mice that was Cxcr4 independent. In contrast, in WHIM mice, LPS did not affect circulating T cell levels, but the B cell levels anomalously increased because of selective, cell-intrinsic, and Cxcr4 WHIM allele–dependent emergence of Cxcr4high late pre-B cells, a pattern that was phenocopied by Escherichia coli infection. In both WT and WHIM mice, the CXCR4 antagonist AMD3100 rapidly increased circulating lymphocyte levels that then rapidly contracted after subsequent LPS treatment. Thus, LPS-induced lymphopenia is CXCR4 independent, and a WHIM mutation does not increase clinical LPS sensitivity. Anomalous WT Cxcr4-independent, but Cxcr4 WHIM-dependent, promobilizing effects of LPS on late pre-B cell mobilization reveal a distinct signaling pathway for the variant receptor.

Publisher

The American Association of Immunologists

Subject

Immunology and Allergy,General Medicine,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3