Analysis of Qa-1bPeptide Binding Specificity and the Capacity of Cd94/Nkg2a to Discriminate between Qa-1–Peptide Complexes

Author:

Kraft Jennifer R.1,Vance Russell E.2,Pohl Jan3,Martin Amy M.3,Raulet David H.2,Jensen Peter E.1

Affiliation:

1. Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322

2. Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720

3. Microchemical Facility, Emory University School of Medicine, Atlanta, Georgia 30322

Abstract

The major histocompatibility complex class Ib protein, Qa-1b, serves as a ligand for murine CD94/NKG2A natural killer (NK) cell inhibitory receptors. The Qa-1b peptide-binding site is predominantly occupied by a single nonameric peptide, Qa-1 determinant modifier (Qdm), derived from the leader sequence of H-2D and L molecules. Five anchor residues were identified in this study by measuring the peptide-binding affinities of substituted Qdm peptides in experiments with purified recombinant Qa-1b. A candidate peptide-binding motif was determined by sequence analysis of peptides eluted from Qa-1 that had been folded in the presence of random peptide libraries or pools of Qdm derivatives randomized at specific anchor positions. The results indicate that Qa-1b can bind a diverse repertoire of peptides but that Qdm has an optimal primary structure for binding Qa-1b. Flow cytometry experiments with Qa-1b tetramers and NK target cell lysis assays demonstrated that CD94/NKG2A discriminates between Qa-1b complexes containing peptides with substitutions at nonanchor positions P4, P5, or P8. Our findings suggest that it may be difficult for viruses to generate decoy peptides that mimic Qdm and raise the possibility that competitive replacement of Qdm with other peptides may provide a novel mechanism for activation of NK cells.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3