B70/B7-2 is identical to CD86 and is the major functional ligand for CD28 expressed on human dendritic cells.

Author:

Caux C1,Vanbervliet B1,Massacrier C1,Azuma M1,Okumura K1,Lanier L L1,Banchereau J1

Affiliation:

1. Laboratory for Immunological Research, Schering-Plough, Dardilly, France.

Abstract

Dendritic cells comprise a system of highly efficient antigen-presenting cells involved in the initiation of T cell responses. Herein, we investigated the role of the CD28 pathway during alloreactive T cell proliferation induced by dendritic-Langerhans cells (D-Lc) generated by culturing human cord blood CD34+ progenitor cells with granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. In addition to expressing CD80 (B7/BB1), a subset of D-Lc expressed B70/B7-2. Binding of the CTLA4-Ig fusion protein was completely inhibited by a combination of monoclonal antibodies (mAbs) against CD80 and B70/B7-2, indicating the absence of expression of a third ligand for CD28/CTLA-4. It is interesting to note that mAbs against CD86 completely prevented the binding of CTLA4-Ig in the presence of mAbs against CD80 and bound to a B70/B7-2-transfected fibroblast cell line, demonstrating that the B70/B7-2 antigen is identical to CD86. CD28 triggering was essential during D-Lc-induced alloreaction as it was inhibited by mAbs against CD28 (9 out of 11 tested). However, none of six anti-CD80 mAbs demonstrated any activity on the D-Lc-induced alloreaction, though some were previously described as inhibitory in assays using CD80-transfected cell lines. In contrast, a mAb against CD86 (IT-2) was found to suppress the D-Lc-dependent alloreaction by 70%. This inhibitory effect was enhanced to > or = 90% when a combination of anti-CD80 and anti-CD86 mAbs was used. The present results demonstrate that D-Lc express, in addition to CD80, the other ligand for CTLA-4, CD86 (B70/B7-2), which plays a primordial role during D-Lc-induced alloreaction.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3