Endothelial Cells Modify the Costimulatory Capacity of Transmigrating Leukocytes and Promote Cd28-Mediated Cd4+ T Cell Alloactivation

Author:

Denton Mark D.12,Geehan Christopher S.1,Alexander Steve I.1,Sayegh Mohamed H.2,Briscoe David M.1

Affiliation:

1. From the Division of Nephrology, Department of Medicine, Children's Hospital,

2. Laboratory of Immunogenetics and Transplantation, Renal Division, Department of Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115

Abstract

Activated vascular endothelial cells (ECs) express major histocompatibility complex (MHC) class II molecules in vitro and in vivo in acute and chronic allograft rejection. However, human ECs may be limited in their ability to effectively activate CD4+ T cells, because they do not express members of the B7 family (CD80 and CD86) of costimulatory molecules. In this study, we show that ECs promote the full activation of CD4+ T cells via trans-costimulatory interactions. By reverse transcriptase polymerase chain reaction, Western blot, and FACS® analysis, we could not detect the expression of CD80 and CD86 on activated ECs and found minimal expression on purified CD4+ T cells. In contrast, both CD80 and CD86 were expressed in allogeneic CD4+ T cell–EC cocultures. Expression of CD86 peaked at early times between 12 and 24 h after coculture, whereas CD80 was not expressed until 72 h. Addition of anti-CD86 but not anti-CD80 monoclonal antibodies to cocultures inhibited IL-2 production and the proliferation of CD4+ T cells to allogeneic donor human umbilical vein ECs (HUVECs), as well as to skin and lung microvascular ECs. Furthermore, we found that interferon γ–activated ECs but not untreated ECs induced mRNA and cell surface expression of CD80 and CD86 on CD4+ T cells, and these T cells were functional to provide a trans-costimulatory signal to autologous CD4+ T cells. Blockade of MHC class II and lymphocyte function–associated antigen 3 but not other EC cell surface molecules on IFN-γ–activated ECs inhibited the induction of CD86 on CD4+ T cells. Transmigration of purified populations of monocytes across EC monolayers similarly resulted in the induction of functional CD86, but also induced the de novo expression of the cytokines interleukin (IL)-1α and IL-12. In addition, EC-modified monocytes supported enhanced proliferation of allogeneic and autologous CD4+ T cells. Taken together, these data define the ability of the endothelium to modify CD4+ T cells and monocytes for trans-costimulatory events. This unique function of the endothelium in alloimmune T cell activation has functional consequences for the direct and the indirect pathways of allorecognition.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Reference44 articles.

1. The molecular basis of alloreactivity;Lechler;Immunol. Today.,1990

2. Signals and signs for lymphocyte responses;Janeway;Cell.,1994

3. CD28/B7 system of T cell costimulation;Lenschow;Annu. Rev. Immunol.,1996

4. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response;Lucas;J. Immunol.,1995

5. CD28 costimulation prevents cell death during primary T cell activation;Noel;J. Immunol.,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3