Single‐cell transcriptomics reveals antigen‐presenting capacity and therapeutic resistance potential of immunomodulatory endothelial cells in colorectal cancer

Author:

Wen Jingyi1ORCID

Affiliation:

1. School of Biology and Biological Engineering South China University of Technology Guangzhou Guangdong China

Abstract

AbstractBackgroundThe heterogeneity of tumor endothelial cells (TECs) hinders the efficacy of antiangiogenic therapies (AATs). Only a small percentage of angiogenic TECs are considered effective targets for AATs. Immunomodulatory ECs (IMECs), as a newly focused functional subgroup of endothelial cells (ECs), are being evaluated for their ability to regulate tumor immune balance and influence existing AATs.MethodsBased on single‐cell transcriptome data from colorectal cancer in a publicly available database, we conducted a wide array of bioinformatic approaches to study EC subsets that meet the IMECs definition. Our investigation encompassed the gene expression signatures of these subsets, cellular composition differences, cell–cell interactions.ResultsTwo subsets that meet the IMECs definition were found in tumors and para‐cancerous tissues. Combined with the results of gene ontological analysis and interaction with CD4+ T cells, we found that IMECs can present MHC‐II antigens to mature CD4+ T cells. There were differences in the level of interaction between IMECs and different types of mature CD4+ T cell subsets. In addition, IMEC subsets had different expression levels of angiogenesis related genes. The angiogenesis score of IMECs decreased after patients received immunotherapy. IMEC subsets do not depend on a single proangiogenic receptor and are involved in regulating angiogenesis, which may reduce the efficacy of AATs. The adverse effects of specific IMEC subsets on AATs were validated in the RNA‐seq dataset of the bevacizumab treatment group.ConclusionOur study suggests the potential MHC‐II antigen presentation capacity of IMECs and the enhanced angiogenesis characteristics within tumors. The function of IMECs in the vascular network may have a potentially adverse effect on AATs. Controlling the functional properties of IMECs may be a new angle for tumor therapy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3