Determinants of HIV-1 Mutational Escape From Cytotoxic T Lymphocytes

Author:

Yang Otto O.1,Sarkis Phuong Thi Nguyen2,Ali Ayub1,Harlow Jason D.2,Brander Christian2,Kalams Spyros A.2,Walker Bruce D.2

Affiliation:

1. Division of Infectious Diseases, 37-121 CHS, UCLA Medical Center, Los Angeles, CA 90095

2. Partners AIDS Research Center and Infectious Disease Unit, Massachusetts General Hospital-East, Charlestown, MA 02129

Abstract

CD8+ class I–restricted cytotoxic T lymphocytes (CTLs) usually incompletely suppress HIV-1 in vivo, and while analogous partial suppression induces antiretroviral drug-resistance mutations, epitope escape mutations are inconsistently observed. However, escape mutation depends on the net balance of selective pressure and mutational fitness costs, which are poorly understood and difficult to study in vivo. Here we used a controlled in vitro system to evaluate the ability of HIV-1 to escape from CTL clones, finding that virus replicating under selective pressure rapidly can develop phenotypic resistance associated with genotypic changes. Escape varied between clones recognizing the same Gag epitope or different Gag and RT epitopes, indicating the influence of the T cell receptor on pressure and fitness costs. Gag and RT escape mutations were monoclonal intra-epitope substitutions, indicating limitation by fitness constraints in structural proteins. In contrast, escape from Nef-specific CTL was more rapid and consistent, marked by a polyclonal mixture of epitope point mutations and upstream frameshifts. We conclude that incomplete viral suppression by CTL can result in rapid emergence of immune escape, but the likelihood is strongly determined by factors influencing the fitness costs of the particular epitope targeted and the ability of responding CTL to recognize specific epitope variants.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3