Optimizing Workflows and Processing of Cytologic Samples for Comprehensive Analysis by Next-Generation Sequencing: Memorial Sloan Kettering Cancer Center Experience

Author:

Tian Shaozhou Ken1,Killian J. Keith,Rekhtman Natasha,Benayed Ryma,Middha Sumit,Ladanyi Marc,Lin Oscar,Arcila Maria E.

Affiliation:

1. From the Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.

Abstract

The value and suitability of cytology specimens for molecular diagnosis has been demonstrated by numerous studies. In practice, however, the success rates vary widely across institutions depending on the disease setting, institutional practices of acquisition, handling/processing, and testing methodologies. As the number of clinically relevant biomarkers continues to increase, more laboratories are turning to next-generation sequencing platforms for testing. Although amplicon-based next-generation sequencing assays, interrogating a limited genomic territory, can be performed with minimal input material, broader-based next-generation sequencing assays have higher DNA input requirements that may not be met if the small tissue samples are not acquired and handled appropriately. We briefly describe some of the process changes we have instituted in our laboratories when handling cytologic material to maximize the tissue available for broad hybrid-capture–based next-generation sequencing assays. Among the key changes established were the consolidation and preservation of previously discarded supernatant material in cytologic samples, the introduction of mineral oil for deparaffinization of cell blocks, and adjustments in the molecular laboratory process and bioinformatics pipelines. We emphasize that even minimal changes can have broad implications for test performance, highlighting the importance of a cohesive group-based approach among clinical, cytopathology, surgical pathology, molecular, and bioinformatics teams.

Publisher

Archives of Pathology and Laboratory Medicine

Subject

Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3