Whole slide image representation in bone marrow cytology

Author:

Mu YouqingORCID,Tizhoosh H.R.ORCID,Dehkharghanian Taher,Campbell Clinton JV

Abstract

AbstractOne of the goals of AI-based computational pathology is to generate compact WSI representations, identifying the essential information required for diagnosis. While such approaches have been applied to histopathology, few applications have been reported in cytology. Bone marrow aspirate cytology is the basis for key clinical decisions in hematology. However, visual inspection of aspirate specimens is a tedious and complex process subject to variation in interpretation, and hematopathology expertise is scarce. The ability to generate a compact representation of an aspirate specimen may form the basis for clinical decision support tools in hematology. We have previously published an end-to-end AI-based system for counting and classifying cells from bone marrow aspirate WSI. Using deep embeddings from this model, we construct bags of individual cell features from each WSI, and apply multiple instance learning to extract vector representations for each WSI. Using these representations in vector search, we achieved 0.58 ± 0.02 mAP@10 in WSI-level image retrieval, which outperforms the Random baseline (0.39 ± 0.1). Using a weighted k-nearest-neighbours (k-NN) model on these slide vectors, we predict five broad diagnostic labels on individual aspirate WSI with a weighted-macro-average F1 score of 0.57 ± 0.03 on the test set of 278 randomly sampled WSIs, which outperforms a classifier using empirical class prior probabilities (0.26 ± 0.02). We present the first example of exploring trainable mechanisms to generate compact, slide-level representations in bone marrow cytology with deep learning. This method has the potential to summarize complex semantic information in WSIs toward improved diagnostics in hematology, and may eventually support AI-assisted computational pathology approaches.

Publisher

Cold Spring Harbor Laboratory

Reference73 articles.

1. How does a pathologist make a diagnosis?;Archives of pathology & laboratory medicine,2009

2. Khoury, J. D. et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia, 1–17 (2022).

3. Alaggio, R. et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia, 1–29 (2022).

4. The Continuing Role of Morphology in the Molecular Age

5. Closing the translation gap: AI applications in digital pathology;Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applied machine learning in hematopathology;International Journal of Laboratory Hematology;2023-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3