HER2 Dual In Situ Hybridization: Correlations and Cautions

Author:

Troxell Megan1,Sibley Richard K.1,West Robert B.1,Bean Gregory R.1,Allison Kimberly H.1

Affiliation:

1. From the Department of Pathology, Stanford University Medical Center, Stanford, California

Abstract

Context.— Accurate HER2 testing in breast cancer is crucial for appropriate precision therapy. HER2 testing is most commonly accomplished by a combination of immunohistochemistry and in situ hybridization techniques, as gene amplification is closely tied to protein overexpression. During the last 5+ years, brightfield dual in situ hybridization (DISH) has replaced fluorescence methods (fluorescence in situ hybridization [FISH]) in some laboratories. Objective.— To analyze routine HER2 DISH performance in the field. Design.— We reviewed our experience with HER2 DISH performed at outside laboratories and referred for patient care. Results.— Of 273 identified retrospective DISH results, 55 had repeated FISH testing at our institution; 7 (13%) were discordant. Additional cases had technical flaws hampering appropriate scoring. In 23 cases (42%), HER2 DISH was performed without immunohistochemistry. Slide review of a prospective cohort of 42 consecutive DISH cases revealed 14 (33%) with technical or interpretative limitations potentially jeopardizing results. Commonly identified problems include lack of or weak signals in most tumor cells, and silver precipitate or red signals outside of nuclei, resulting in false-negative or false-positive interpretations, respectively. Further, 44% (24 of 55) of DISH reports lacked complete data, specifically average HER2 signals/cell. Conclusions.— While HER2 DISH can be an efficient and effective alternative to FISH, we illustrate pitfalls and reinforce that careful attention to slide quality and technical parameters are critically important. HER2 DISH cotesting with immunohistochemistry could help minimize false-negative or false-positive HER2 results.

Publisher

Archives of Pathology and Laboratory Medicine

Subject

Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3