Efficient Convolution Network to Assist Breast Cancer Diagnosis and Target Therapy

Author:

Wang Ching-Wei1ORCID,Chu Kai-Lin1,Muzakky Hikam1,Lin Yi-Jia23ORCID,Chao Tai-Kuang23ORCID

Affiliation:

1. Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan

2. Department of Pathology, Tri-Service General Hospital, Taipei 11490, Taiwan

3. Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 11490, Taiwan

Abstract

Breast cancer is the leading cause of cancer-related deaths among women worldwide, and early detection and treatment has been shown to significantly reduce fatality rates from severe illness. Moreover, determination of the human epidermal growth factor receptor-2 (HER2) gene amplification by Fluorescence in situ hybridization (FISH) and Dual in situ hybridization (DISH) is critical for the selection of appropriate breast cancer patients for HER2-targeted therapy. However, visual examination of microscopy is time-consuming, subjective and poorly reproducible due to high inter-observer variability among pathologists and cytopathologists. The lack of consistency in identifying carcinoma-like nuclei has led to divergences in the calculation of sensitivity and specificity. This manuscript introduces a highly efficient deep learning method with low computing cost. The experimental results demonstrate that the proposed framework achieves high precision and recall on three essential clinical applications, including breast cancer diagnosis and human epidermal receptor factor 2 (HER2) amplification detection on FISH and DISH slides for HER2 target therapy. Furthermore, the proposed method outperforms the majority of the benchmark methods in terms of IoU by a significant margin (p<0.001) on three essential clinical applications. Importantly, run time analysis shows that the proposed method obtains excellent segmentation results with notably reduced time for Artificial intelligence (AI) training (16.93%), AI inference (17.25%) and memory usage (18.52%), making the proposed framework feasible for practical clinical usage.

Funder

National science and technology council, Taiwan

Tri-Service General Hospital, Taipei, Taiwan

National Taiwan University of Science and Technology—Tri-Service General Hospital

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3