Scientific Visualization Tools to Improve Utilizing Neural Interface

Author:

Chuprina Svetlana Igorevna1ORCID,Labutin Ivan Alexandrovich1ORCID

Affiliation:

1. Perm State University

Abstract

The technological progress in the field of Brain-Computer Interface and its integration with IoT put on the agenda the question of the fast transition of the technology from laboratory experiments into everyday life. But there are a lot of challenges and some of them, in particular, issues of replicability and reproducibility of experiments are under discussion in this paper. We also discuss how to improve utilizing neural Interface with the help of ontology-driven scientific visualization tools. Using the principles of “clean-room reverse engineering” methodology to rewrite existing EEG device drivers we make it possible to embed visualization tools which dynamically render the streaming data coming from different EEG devices within a diverse IoT infrastructure without any legal complications.

Publisher

Keldysh Institute of Applied Mathematics

Reference27 articles.

1. K. Ryabinin, S. Chuprina, High-level toolset for comprehensive visual data analysis and model validation, Procedia Computer Science 108 (2017) 2090–2099. URL: https://www.sciencedirect.com/science/article/pii/S1877050917305690. doi:10.1016/j.procs.2017.05.050, international Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland.

2. K. Ryabinin, S. Chuprina, I. Labutin, Ontology-driven toolset for audio-visual stimuli representation in eeg-based bci research, in: Proceedings of the International Conference on Computer Graphics and Vision “Graphicon”, CEUR, volume 31, Keldysh Institute of Applied Mathematics, 2021, pp. 223–234. URL: https://keldysh.ru/papers/2021/prep_vw.asp?pid=9273&lg=e. doi:10.20948/graphicon-2021-3027-223-234. arXiv:http://ceur-ws.org/Vol-3027/paper21.pdf.

3. K. V. Ryabinin, S. I. Chuprina, I. A. Labutin, Ontology-driven tools for eeg-based neurophysiological research automation, Scientific Visualization 13.4 (2021) 93–110. doi:10.26583/sv.13.4.08.

4. K. V. Ryabinin, S. I. Chuprina, I. A. Labutin, Tackling iot interoperability problems with ontology-driven smart approach, Lecture Notes in Networks and Systems 342 (2021) 77–91. doi:10.1007/978-3-030-89477-1_9.

5. B. Allison, The i of bcis: Next generation interfaces for brain–computer interface systems that adapt to individual users, in: J. A. Jacko (Ed.), Human-Computer Interaction. Novel Interaction Methods and Techniques, Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 558–568.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3