Ontology-Driven Toolset for Audio-Visual Stimuli Representation in EEG-Based BCI Research

Author:

Ryabinin Konstantin1ORCID,Chuprina Svetlana1ORCID,Labutin Ivan1ORCID

Affiliation:

1. Perm State University

Abstract

In the last decade, the recent advances in software and hardware facilitate the increase of interest in conducting experiments in the field of neurosciences, especially related to human-machine interaction. There are many mature and popular platforms leveraging experiments in this area including systems for representing the stimuli. However, these solutions often lack high-level adaptability to specific conditions, specific experiment setups, and third-party software and hardware, which may be involved in the experimental pipelines. This paper presents an adaptable solution based on ontology engineering that allows creating and tuning the EEG-based brain-computer interfaces. This solution relies on the ontology-driven SciVi visual analytics platform developed earlier. In the present work, we introduce new capabilities of SciVi, which enable organizing the pipeline for neuroscience-related experiments, including the representation of audio-visual stimuli, as well as retrieving, processing, and analyzing the EEG data. The distinctive feature of our approach is utilizing the ontological description of both the neural interface and processing tools used. This increases the semantic power of experiments, simplifies the reuse of pipeline parts between different experiments, and allows automatic distribution of data acquisition, storage, processing, and visualization on different computing nodes in the network to balance the computation load and to allow utilizing various hardware platforms, EEG devices, and stimuli controllers.

Publisher

Keldysh Institute of Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SLAM – A thin-client for interoperable annotation and biomedical signal handling;SoftwareX;2024-09

2. Ontology-Driven Visual Analytics Software Development;Programming and Computer Software;2022-05-30

3. Scientific Visualization Tools to Improve Utilizing Neural Interface;Proceedings of the 32nd International Conference on Computer Graphics and Vision;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3