High accuracy scheme for neutron transport neutron defense problem

Author:

Aristova Elena NikolaevnaORCID,Astafurov Gleb OlegovichORCID

Abstract

The paper considers the problems of calculating the stationary transport of high-energy neutrons from an external source in a hollow metal structure. The spatial grid for calculation consists of tetrahedra, which allows to model complicated geometric shapes of objects. The calculated area is highly heterogeneous, since it consists of metal parts with strong absorption and scattering and practically non-absorbing internal parts. A scheme based on a minimal stencil, within a single tetrahedron for the calculation. The scheme has a high approximation order and is based on characteristic approaches. For a smooth solution and a constant absorption coefficient in each cell, the scheme has a third order of convergence. The cells are traversed using the graph topological sorting algorithm. A new version of the parallelization of the calculation for the OpenMP standard has been proposed. For discretization by an angular variable, a cubature formula of the direct product type over two angles with an algebraic order of accuracy of nine is used. The angular grid is constructed in such a way as to correctly calculate the moments for narrowly directed beams of external radiation. The standard 26-group approximation of the BNAB library is used for energy sampling. A decrease in the neutron flux inside the structure is shown for groups with an energy above 1 MeV. Graphs of the angular distribution inside the structure are given.

Publisher

Keldysh Institute of Applied Mathematics

Reference12 articles.

1. Г.О. Астафуров, “Построение и исследование метода CPP (Cubic Polynomial Projection) решения уравнения переноса”, Препринты ИПМ им. М.В. Келдыша, 2022, №66, 56с. https://doi.org/10.20948/prepr-2022-66 https://library.keldysh.ru/preprint.asp?id=2022-66

2. Е.Н. Аристова, Г.О. Астафуров, “Проекционно-характеристический метод третьего порядка для решения уравнения переноса на неструктурированных сетках”, Матем. моделирование, 35:11 (2023), 79–93

3. Е.Н. Аристова, Г.О. Астафуров, "Метод коротких характеристик второго порядка для решения уравнения переноса на сетке из тетраэдров", Матем. моделирование, 28:7 (2016), 20-30

4. Math. Models Comput. Simul., 9:1 (2017), 40-47

5. Е.Н. Аристова, Г.О. Астафуров, "Характеристическая схема для решения уравнения переноса на неструктурированной сетке с барицентрической интерполяцией", Матем. моделирование, 30:9 (2018), 33-50

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3